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SUMMARY

Directed conversion of mature human cells, as from
fibroblasts to neurons, is of potential clinical utility
for neurological disease modeling as well as cell
therapeutics. Here, we describe the efficient genera-
tion of human-induced neuronal (hiN) cells from
adult skin fibroblasts of unaffected individuals and
Alzheimer’s patients, using virally transduced tran-
scription regulators and extrinsic support factors.
hiN cells fromunaffected individuals displaymorpho-
logical, electrophysiological, and gene expression
profiles that typify glutamatergic forebrain neurons
and are competent to integrate functionally into the
rodent CNS. hiN cells from familial Alzheimer disease
(FAD) patients with presenilin-1 or -2 mutations
exhibit altered processing and localization of amyloid
precursor protein (APP) and increased production of
Ab, relative to the source patient fibroblasts or hiN
cells from unaffected individuals. Together, our find-
ings demonstrate directed conversion of human
fibroblasts to a neuronal phenotype and reveal cell
type-selective pathology in hiN cells derived from
FAD patients.

INTRODUCTION

Mature mammalian cells can be reprogrammed to alternative

fates by introduction of lineage-specific transcription regulators.

For instance,Myod1 expression has been shown to induce amy-

ocyte phenotype in fibroblast cultures (Davis et al., 1987). Simi-

larly, transduction of a set of pluripotency regulators is sufficient

to convert skin fibroblasts to induced pluripotency stem (iPS)

cells with embryonic stem cell characteristics (Takahashi et al.,

2007; Takahashi and Yamanaka, 2006; Yu et al., 2007). iPS cell

technology has fueled much excitement in regenerative medi-

cine, as these cells could be differentiated to generate ‘‘replace-
ment’’ cell therapeutics. Patient iPS cell-derived neurons have

also been proposed to serve as neurodegenerative disease

models (Abeliovich and Doege, 2009).

A limitation to human iPS cell technology is that it remains inef-

ficient (less than 1% of cells are typically reprogrammed) and

time intensive; iPS cell generation and subsequent differentiation

to a neuronal phenotype can take 1–2 months each. Further-

more, the pluripotent state is associated with tumorigenesis

and genetic instability (Pera, 2011). Recently, the directed con-

version of rodent skin fibroblasts to a neuronal fate was re-

ported, utilizing a set of three forebrain transcription regulators

and apparently circumventing the production of a pluripotent

intermediate state (Vierbuchen et al., 2010). Here, we describe

the directed conversion of adult human fibroblasts to a neuronal

phenotype, termed human-induced neuronal (hiN) cells. To vali-

date the approach, we show that hiN cells display electrophysi-

ological properties of forebrain glutamatergic neurons and can

integrate into mammalian CNS circuitry.

We further apply hiN cell technology to a panel of skin fibro-

blasts derived from patients with sporadic or familial forms of

Alzheimer’s disease (AD) and examine AD-associated neuronal

pathologies. AD patients typically present with age-associated

cognitive dysfunction, including reduced short-term (episodic)

memory and spatial disorientation. These cognitive deficits are

associated with neuronal and synaptic loss that is most promi-

nent within the medial temporal lobe of the cerebral cortex and

the hippocampus (Alzheimer, 1907). Additional pathological fea-

tures of AD include extracellular amyloid plaques composed

largely of Ab fragments of amyloid precursor protein (APP) and

intraneuronal tangles of Tau-paired helical filaments (Hardy

and Selkoe, 2002). Rare, autosomal, dominantly inherited fa-

milial forms of AD (FAD) are caused by mutations in APP or in

the two presenilin genes (presenlin-1 and –2, or PSEN1 and

PSEN2) that encode components of the g-secretase enzyme

complex that is required for APP cleavage to Ab (Hardy and

Selkoe, 2002).

The amyloid hypothesis of AD, which is based on the afore-

mentioned pathological and genetic findings, proposes that

modified cleavage of APP by b-secretase and g-secretase leads
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to the generation of a pathogenic Ab42 fragment. Consistent

with this hypothesis, expression of disease-associated PSEN

FAD mutations in cell and animal models leads to preferential

accumulation of Ab42 isoform relative to an Ab40 isoform. None-

theless, basic questions regarding the pathogenicmechanism of

PSEN FAD mutations remain (De Strooper and Annaert, 2010;

Shen and Kelleher, 2007). For instance, although PSEN FAD

mutations increase relative Ab42 production, they paradoxically

reduce total g-secretase activity, at least in cell-free and heterol-

ogous cell overexpression systems (Bentahir et al., 2006; Walker

et al., 2005). The potential role of reduced g-secretase activity in

the disease process remains controversial. As the majority of

studies to date rely on exogenous overexpression of PSEN

FAD mutations in tumor cells, transgenic mice, or skin fibro-

blasts, the impact of endogenous PSEN FADmutations on func-

tional human patient neurons remains unclear. Moreover, why

mutations in the broadly expressed PSEN-1 and -2 genes lead

to a selective neuronal pathology is an open question.

RESULTS

Phenotypic Characterization of hiN Cells
We initially attempted to convert human adult skin fibroblasts

(STC0022; see Table S1 available online) to hiN cells by viral

cotransduction of a combination of three transcription regula-

tors—Ascl1, Brn2, and Myt1l—that were shown to be effective

for reprogramming of rodent cells (Vierbuchen et al., 2010).

These attempts were unsuccessful and led to prominent apo-

ptotic cell death. Viral cotransduction of a larger set of forebrain

transcription regulators—Brn2, Myt1l, Zic1, Olig2, and Ascl1, in

the presence of neuronal survival factors (including brain-derived

neurotrophic factor [BDNF], neurotrophin-3 [NT3], and glial-

conditioned media [GCM]), resulted in the generation of cells

with a neuronal morphology (human-induced neuronal cells, or

hiN cells) (Figures 1A–1N). Three weeks after viral transduction,

hiN cells were positive for neuronal markers, including Tuj1,

MAP2, Tau1, NeuN, NCAM, and Neurofilament-160 kd (Figures

1B–1G and 1J–1N and Figure S1). Such cells were never

observed in fibroblast cultures transduced with control vector

only (Figures 1H and 1I). Cell staining with the astroglial marker

glial fibrillary acidic protein (GFAP) was not detected in hiN cell

cultures (Figure S1). More than 90% of MAP2-positive cells

were positive for the neocortical glutamate neuron marker Tbr1

(Figure 1K), and theseTbr1-positive cells did not express the

fibroblast marker, fibroblast-specific protein-1 (FSP1; Figure 1L).

Approximately half of the MAP2-positive cells were positive for

the mature glutamatergic neuron marker vesicular glutamate

transporter-1 (vGLUT1) in a stereotypical punctate pattern (Fig-

ure 1M). Only rare MAP2-positive cells (less than 1%) displayed

the GABAergic neuron marker, glutamic acid decarboxylase-65

(GAD65; Figure 1N).

We applied our hiN cell conversion protocol to a panel of nine

adult human skin fibroblast lines in total (see Table S1). Quanti-

tative analysis indicates that conversion efficiency of fibroblasts

to MAP2-positive hiN cells across these lines ranged from 7.1%

to 8.9% (as a percentage of input fibroblasts; n = 3 per group).

After accounting for cell attrition during the 3 week culture,

28.4%–36.1% of the surviving cells were MAP2 positive (Fig-
360 Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc.
ure 1O). Across these lines, 48.2%–60.9% of the MAP2-positive

cells were also positive for vGLUT1 (Figure 1P).

Time course analysis indicated that MAP2- and vGLUT1-posi-

tive hiN cells first appear by day 7 after viral vector transduction

and that maximal conversion occurs by 21 days (Figure 2A). After

21 days, hiN cell number decreased, and this was accompanied

by evidence of apoptosis (Figure 2A and Figures S2C–S2G). Re-

maining cells displayed progressively elongated processes, as

expected (Figure S2B). To determine the minimal factors that

are necessary and sufficient to generate hiN cells, we removed

individual transcription factor vectors or extrinsic components

from the conversion protocol. These data indicated that Ascl1

and Brn2 are essential for the process, whereas Zic1 and Myt1l

modify efficiency, and Oligo2 appears to be redundant (Fig-

ure 2B). After transduction with viral factor cocktails, converted

cells maintained expression of the extrinsic virally encoded

Ascl1, Brn2, and Myt1l transcription factors, as determined by

RT-PCR analysis, whereas extrinsic Zic1 expression was main-

tained only in a subset of cultures (Figure S2A). Maintenance of

exogenous factor expression may have contributed to the

apoptotic loss of hiN cells with extended culturing. Of the tested

soluble extrinsic factors, only BDNF appeared essential for

production of MAP2+/vGLUT1+ cells (Figure 2B and Figure S2D).

A single polycistronic lentivirus vector harboring the genes

Ascl1, Brn2, and Zic1 (ABZ vector) was sufficient for the conver-

sion process (Figure 2C and Figures S2K–S2N). ABZ vector-

mediated conversion was highly efficient and could be further

enhanced by adding Myt1l (Figure 2C and Figures S2O–S2V).

Specifically, 62% ± 6% of the adult human fibroblasts that

were transducedwith the ABZ vector and 85% ± 15%of the cells

that were transduced with the ABZ vector and Myt1 acquired

a MAP2-positive neuronal morphology phenotype (Figure 2C

and Figures S2L–S2Q). These hiN cells expressed additional

neuron markers, including Tau-1, Tuj1, Tbr1, and vGLUT1

(Figures S2R–S2V).

To further characterize the hiN cell phenotype, we performed

whole-transcriptome gene expression profiling on neurons that

were purified from hiN cell cultures. hiN cell cultures were sub-

jected to fluorescence-activated cell sorting (FACS; Figures

S2H–S2J) to select for neural cell adhesion molecule (NCAM,

a marker for mature neurons as well as some neural progeni-

tors)-positive cells. RNA preparations from FACS-purified hiN

cells, total (‘‘mixed’’) cultures, and unconverted fibroblasts

were then analyzed for genome-wide expression (Table S2).

Hierarchical clustering analysis demonstrated that the transcrip-

tome profiles of purified hiN cells weremore similar to each other

than to the originating fibroblasts (Figure 2D). Using gene

ontology (GO) functional annotation, we identified genes that

are most enriched within the purified hiN cell samples relative

to the fibroblast samples (upregulated by at least 4-fold with

a significance analyses of microarrays false discovery rate

[FDR] cutoff of less than 25%). Consistent with a neuronal phe-

notype, the most highly enriched, functionally annotated gene

sets in the purified hiN samples included ‘‘axonal projection’’

and ‘‘neuronal differentiation’’ genes (Figures 2E–2G and Table

S2). Finally, we performed hierarchical clustering to broadly

compare hiN cell gene expression profiles to those seen in

human neurons (isolated from postmortem brain samples) and
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Figure 1. hiN Cells Display a Forebrain Glutama-

tergic Neuron Phenotype

(A) Schematic of the conversion method. Top panels show

phase contrast images of human skin fibroblast (left) or hiN

cell (right) cultures. TFs, lentiviral vectors encoding tran-

scription regulators Ascl1, Brn2, Myt1l, Olig2, and Zic1;

NTs, neurotrophins BDNF and NT3; GCM, glial-condi-

tioned medium.

(B–G) Neuronal marker analysis of hiN cell cultures.

Human skin fibroblasts (STC0022; see Table S1) were

transduced with the five transcription regulators, cultured

for 3 weeks as in (A), and subsequently immunostained

with antibodies specific to Tuj1 (B and E; in red), MAP2 (C;

in green), or Tau-1 (F; in green). (D) Merged image of (B)

and (C). (G) Merged image of (E) and (F). Arrows in (F)

indicate the typical distal enrichment pattern of Tau1

antibody immunostaining.

(H and I) Absence of neuronal markers in lentiviral vector-

only transduced fibroblast cultures. Human skin fibro-

blasts (line STC0022) transduced with control lentiviral

vector only were cultured for 3 weeks as above and ana-

lyzed for expression of Tuj1 (in red, H) and MAP2 (in green,

H). Cultures were counterstained with the nuclear marker

4,6-diamidino-phenylindole (I, DAPI, in blue). Neuronal

marker expression was not detected.

(J) Costaining of hiN culture with the neuronal nuclear

marker NeuN (red) and MAP2 (green) is shown.

(K and L) Forebrain marker expression in hiN cells. The

majority of hiN cells expressed the neocortical glutamate

neuron nuclear marker Tbr1 (K and L, in red) along with

MAP2 (K, in green). In contrast, Tbr1-positive hiN cells

were not stained by the fibroblast marker fibroblast-

specific protein-1 (L, FSP1, in green). Arrows in (L) de-

marcate Tbr1-positive nuclei.

(M) A majority of Tuj-1-positive hiN cells expressed the

glutamatergic neuron marker vGLUT1 (in green). Inset

shows magnified view of the boxed region; arrows indi-

cate the typical vGLUT1-positive punctate pattern.

(N) Only rare (<1%, in green) hiN Tau-1-positive cells also

stained positively for GAD65 (in red).

(O and P) Quantification of MAP2- and vGLUT1-positive

cells in hiN cell cultures derived from a panel of nine

human fibroblast lines. (O) Black bars indicate the percent

of total cells that are MAP2-positive cells with extended

processes (at least 3-fold greater than soma diameter, as

in F). (P) Black bars indicate the percent of MAP2-positive

cells that stain for the glutamatergic neuron marker

vGLUT1 as in (M). n = 3 wells for each group; data are

presented as mean ± SEM.

Scale bars: (J) and inset of (M), 10 mm; (B–G), (K–L), and

(N), 20 mm; (A), (H), (I), and (M), 40 mm. See also Figure S1

and Table S1.
other cell types. As expected, FACS-sorted hiN cell samples

clustered most closely with CNS neurons rather than fibroblasts,

astrocytes, neural progenitors, or pluripotent ES or iPS cells

(Figure S3).
Cell 146,
hiN Cell Reprogramming Is Directed
Consistent with the idea that the hiN cell pheno-

type can be achieved without neuronal progen-

itor intermediates, expression of the progenitor

markers Sox2 and Pax6 was not apparent

during hiN cell reprogramming (Figures 3A–3C
and 3E–3G). Expression of Nestin, which is associated with

neuronal progenitors but also functionsmore generally as a cyto-

skeleton regulator during morphological cell changes (Gilyarov,

2008), appeared transiently in a subpopulation of cells (<10%;
359–371, August 5, 2011 ª2011 Elsevier Inc. 361
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Figure 2. Further Description of hiN Cell Conversion: Essential Factors and Transcriptome Analysis

(A) Temporal profile of hiN cell conversion. MAP2- or vGLUT1-positive cells were quantified at indicated time points after transduction with conversion factor

vectors (5F, indicated as blue or red line) or empty vector (Empty, green or purple line). The number of MAP2- (diamond) and vGLUT1-positive (square) cells

peaked at 21 days after 5F transduction, whereas such cells were not apparent with empty vector. n = 3 at each time point; data are presented as mean ± SEM.

(B) Required factors in hiN cell conversion. Fibroblasts were transduced with the 5-factor (5F) cocktail as above or with factor mixes lacking the indicated

individual factors. Bar graphs indicate the number of vGLUT1-positive cells at 3 weeks after transduction, as a percent of 5F transduction. GCM, glial-conditioned

media. n = 3 per group. Results represent the mean ± SEM.

(C) Fibroblasts were transduced with a polycistronic vector harboring Ascl1, Brn2, and Zic1 (ABZ-polycistronic) alone or in combination with aMyt1l vector. The

percentage of Ascl1-positive cells per total cell number (Hoechst-positive nuclei, blue bars) reflects the transduction efficiency. The percentage ofMAP2-positive

hiN cells of transduced Ascl1-positive cells (red bars) reflects the hiN cell conversion efficiency. n = 3 per group. Results represent the mean ± SEM.

(D) Dendrogram presenting the hierarchical clustering of gene expression array profiles as measured by Human Genome U133 Plus 2.0 Arrays (Affymetrix).

Complete linkage hierarchical clustering analysis was performed using Pearson’s correlation metric. The dendrogram includes individual samples from FACS-

sorted hiN cells (iN_FACS), unsorted hiN cell cultures (iN_Mix), or the original fibroblasts (Fibro). Samples are labeled as to the fibroblast of origin (see Table S1).

hiN cell preparations clustered together, rather than with the originating fibroblast preparations.

(E and F) The five most significantly enriched gene ontology (GO) categories among the genes upregulated (E) or downregulated (F) in the context of hiN cell

conversion are presented. Expression data were analyzed using a false discovery rate of less than 25% and a log-ratio threshold of > 2. Nominal p values are

listed.

(G) Heat map specifying the genes and expression values within the GO category ‘‘neuron projection’’ as in (E). Relative expression levels of individual genes

(as labeled on rows) are presented from low (green) to high (red) as per the color chart bar at the bottom. Cell samples are labeled as per (D).

See also Figure S2, Figure S3, and Table S2.
Figures 3I and 3M–3O). In contrast to hiN cell reprogramming,

differentiation of human iPS cells to a neural progenitor state

led to the robust accumulation of Sox2-positive, Pax6-positive,

and Nestin-positive progenitors, as expected (Figures 3D, 3H,

and 3L). RNA expression profiling by real-time quantitative RT-

PCR similarly indicated that expression of neuronal progenitor

markers such as FOXG1 and OTX2 was absent from hiN cell

cultures (Figure 3P).

Physiological Properties of hiN Cells
The majority of hiN cells displayed typical neuronal Na+, K+, and

Ca2+ channel properties as assessed by patch-clamp recordings

of cells at days 21–28 of culture. Specifically, TTX-sensitive Na+

currents were characterized by a typical current density-voltage

relationship (Figures 4A and 4B; confirmed in 18 of 22 cells
362 Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc.
analyzed). Outward K+ currents, inhibited in the presence of

intracellular cesium (Cs+), were readily apparent (Figures 4C

and 4D; confirmed in 14 of 16 cells analyzed). Calcium channel

function, measured using Barium (Ba2+) as the charge carrier,

displayed typical neuronal characteristics (Figure 4E; confirmed

in 3 of 4 cells analyzed). Consistent with such channel properties,

most hiN cells were able to fire at least one action potential in

response to depolarizing current injections in current clamp

mode (Figure 4F; 9 of 10 cells analyzed). Furthermore, upon

termination of hyperpolarizing pulses, cells displayed a typical

rebound spike (Figure 4F). Passive membrane properties were

also consistent with an in vitro neuronal phenotype, with a resting

membrane potentials ranging from �67 mV to �32 mV (average

�52 mV; n = 17), membrane time constant (t) ranging from 1.00

to 0.30 ms, membrane resistance (Rm) ranging from 0.12 to
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Figure 3. hiN Cell Reprogramming Is Directed

(A–H) Progenitor markers are not detected in hiN cell cultures. Sox2 (A–C)

and Pax6 (E–G) expression were not detected during hiN cell repro-

gramming at 3, 7, and 21 days after transduction. In contrast, human iPSC

cultures differentiated toward a neuroblast stage (IPS-N; D and H) dis-

played prominent intranuclear expression of the factors. Scale bar, 20 mm.

(I–N) Nestin is transiently expressed in a subset of cells within hiN cell

cultures (I–K), albeit less robustly than in iPS-N cells (L). Staining was not

apparent in empty vector-transduced cells (M and N).

(O) Temporal profile of Nestin-positive cells in hiN cell cultures or empty

vector-transduced skin fibroblasts. n = 3 at each time point. *p < 0.05 by

ANOVA with Bonferroni correction. Results represent the mean ± SEM.

(P) Quantitative real-time RT-PCR analysis of neural progenitor marker

gene expression in hiN cell cultures at 0, 7, or 21 days after transduction as

indicated or in iPSC-N cells. Expression levels are normalized to GAPDH;

error bars represent the standard error of themean (SEM); n > 9 per group.
1.7 GU, and capacitance ranging from 22 to 70 pF. We further

evaluated g-aminobutyric acid (GABA)-ergic and glutamatergic

ligand-gated ion channel activity in hiN cells. hiN cells responded

to exogenous puff application of glutamate or GABA, displaying

typical depolarizing and hyperpolarizing currents, respectively

(Figures 4G–4J; 7 of 7 cells analyzed). Finally, to provide func-

tional evidence that hiN cells possess elements of the intrinsic

machinery for synaptic vesicle release, we quantified local

calcium transients within axon-like processes in the context of

membrane step depolarization (using the fluorescent calcium

indicator Oregon Green-BAPTA [OG-1]). Highly localized, depo-
larization-evoked fluorescence intensity changes were

apparent within the axon-like processes of hiN cells (Fig-

ure 4K; seen in 6 of 10 cells), which are thought to represent

putative synaptic release sites (Forti et al., 2000).

hiN Cells Can Integrate into Neuronal Circuitry
In Vitro and In Vivo
Wedid not observe spontaneous activity that is suggestive of

neuronal connectivity in hiN cells voltage clamped at�70mV

using the standard culture conditions as above (n = 16 of 16

cells tested). We therefore sought to develop alternative

protocols that may provide the appropriate environmental

cues for synaptic maturation. First, as glial cells can play

a major role in the regulation of neuronal synaptic develop-

ment and connectivity (Eroglu and Barres, 2010), hiN cells

were cocultured with murine glial cells (obtained from mice

ubiquitously expressing red fluorescent protein) (Muzumdar

et al., 2007). After 2 weeks of coculture, whole-cell patch-

clamp recordings of hiN cells (identified as nonfluorescent

cells with a neuronal morphology) held at �70 mV revealed

spontaneous membrane current changes that were sensitive

to glutamatergic receptor inhibition with NBQX and APV

(Figures 5A–5C; n = 6 of 10 cells tested).

Second, GFP-labeled hiN cells were transplanted in utero

into embryonic day 13.5 mouse brain (Brüstle et al., 1997).

The transplanted cells migrated from the ventricles into

various brain regions, as expected (Figures 5D and 5E and

Table S3). The identity of GFP-positive transplanted hiN cells

was confirmed by immunostaining with an antibody specific

for human NCAM (Figure 5F). Voltage-clamp recordings from

GFP-positive hiN cells within acutely prepared brain slices from

postnatal day 7 pups demonstrated spontaneous currents of

various amplitudes and frequencies (Figure 5G; n = 3). These

events increased in frequency and amplitude upon blockade of

GABAA receptors with picrotoxin (Figure 5H) and were sup-

pressed with the glutamatergic receptor channel inhibitors

NBQX and APV (Figure 5I). We confirmed the identity of the re-

corded cell by dual fluorescence imaging (Figures S4A and

S4B). Subsequent to the recording, slices were immunostained

to demonstrate expression of the human-specific mitochondrial

marker hMito within recorded cells (Figure S4C; n = 3). Together,
Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc. 363
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Figure 4. Electrophysiological Characterization and Evoked Calcium Transients of Cultured hiN Cells

(A) An example voltage-clamp recording from an hiN cell. Stepping the membrane voltage from�80 mV to more depolarized potentials (�70 to +60 mV in 10 mV

increments) resulted in fast inward currents in 18 of 22 cell analyzed. Shown are example traces between�40 to 0mV. Inset illustrates the pooled current density-

voltage relationship (error bars represent the SEM).

(B) The fast inward currents were sensitive to bath application of the Na+ channel blocker tetrodotoxin (TTX, 600 nM).

(C) Outward K+ currents were obtained (in 14 of the 16 hiN cells recorded) with a KCl-based pipette solution upon depolarizing steps as described above.

(D) Minimal or no outward K+ currents were observed in cells recorded with a Cs+-based pipette solution, as expected, but note the presence of the inward

sodium currents.

(E) Macroscopic whole-cell voltage-dependent Ca2+ channel activity of hiN cells was identified using Ba2+ as the charge carrier. Currents were elicited in

response to depolarizing steps from �70 mV in 10 mV steps (in 3 of the 4 hiN cells analyzed).

(F) In current-clamp mode, hiN cells exhibited a rebound action potential (arrow) at the end of hyperpolarizing current injections and action potentials upon

depolarizing current injection. Bottom panel is a time schematic of the current injection protocol.

(G) Glutamate-mediated postsynaptic currents (PSCs) were elicited by focal application of 1 mM glutamate puffs for 50 ms in cells voltage clamped at �70 mV;

shown are three traces elicited once every 3 min.

(H) Induced PSCs were sensitive to the AMPA channel blocker NBQX (20 mM) and the NMDA blocker APV (50 mM).

(I) Focal application of GABA (50 ms puff, 1 mM) to cells voltage clamped at +20 mV and dialyzed with a low Cl� solution elicited current responses; shown are

three traces evoked every 3 min.

(J) GABA-mediated currents were sensitive to the GABAA antagonist picrotoxin (50 mM). Puff applications of neurotransmitter are indicated by a solid line above

tracings.

(K) (Upper-left) Fluorescence pseudocolor image of a complex axon-like process in an hiN cell dialyzed with 100 mMof the calcium indicator OG-1 (Oregon Green

488 BAPTA-1). (Lower-left) A higher-magnification view of a segment of this process (as demarked by white square in the top panel); individual regions of interest

(ROIs) are indicated by numbered squares within the bottom panel. (Right) Time courses of the relative change in fluorescence (DF/F0) in individual ROIs, as

numbered in the lower-right panel. Calcium transients were evoked by 200ms depolarizing pulses (Vh =�70 to 0mV) in the soma. ROIs #2 and #3 display calcium

transients (hot spots), but no response was elicited in ROI #1.

364 Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc.
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Figure 5. Evidence of hiN Cell Functional Integra-

tion

(A) Representative spontaneous postsynaptic currents

recorded from an hiN cell present in a murine glial mono-

layer coculture. The cell was held at �70 mV. Events of

various amplitudes (5–20 pA) are seen.

(B) Spontaneous postsynaptic currents as observed in (A)

were abolished by bath application of NBQX/APV.

(C) Upon depolarizing current injections in current-clamp

mode, action potentials were induced. Individual traces

represent independent recorded events; action potentials

(indicated by arrows) were seen in five of the nine tracings.

(D and E) Confocal fluorescent images of brain slices

prepared from postnatal day 3 animals that had been

grafted in utero with hiN cells. Transplanted hiN cells

migrated extensively and extended neurite processes. An

arrowhead indicates cell soma; arrows point to apparent

processes. Scale bars: (D) 100 mm, (E) 20 mm.

(F) Confocal reconstruction of a transplantedGFP-positive

hiN cell stained with a human-specific NCAM antibody.

GFP, green; hNCAM, red. Scale bar, 50 mm.

(G) Voltage-clamp recording of an hiN cell (Vh = �70 mV)

integrated into the piriform cortex of the host brain,

demonstrating spontaneous events of low frequency and

amplitude.

(H) The frequency and amplitude of the spontaneous

excitatory postsynaptic currents (sEPSCs, as in G) in-

creased upon blockade of GABAA receptors with 50 mM

picrotoxin.

(I) sEPSCs were drastically reduced by blocking gluta-

matergic synaptic transmission with 20 mM NBQX and

50 mM APV.

(J) Sodium currents of the same cell (G–I) elicited by

voltage steps from Vh = �70 mV (�60 to �20 in 10 mV

steps).

(K) Representative voltage-clamp recording at a holding

potential (Vh = �70 mV) of an hiN cell integrated into the

cingulate gyrus of the host brain. Traces show sponta-

neous slow and fast currents of different amplitudes,

indicating that this neuron receives synaptic contacts from

host cells.

See also Figure S4 and Table S3.
these findings support the idea that hiN cells are capable of

neuronal connectivity.

Generation of hiN Cells from FAD and SAD Patient Skin
Fibroblasts
Asproof of principle for their utility in diseasemodeling,wegener-

ated hiN cells from a panel of human skin fibroblasts derived

from patients with familial AD (FAD) due to mutations in PSEN-1

or -2, patients with sporadic AD (SAD), or unaffected individuals

(UND; n = 3 per each group). Given the likely heterogeneity of

‘‘sporadic’’ disease and the limited number of samples examined

in our study, we subsequently focused herein on phenotypic

examination of the familial lines. hiN cells derived from disease-
Cell 146,
associated fibroblasts appeared similar to

those from unaffected individuals with respect

to neuronal reprogramming characteristics,

such as efficiency of MAP2-positive hiN cell

generation and the percentage of neurons that

express vGLUT1 (Figures 1O and 1P). Induction
of expression of the mature neuron marker synaptophysin was

comparable among the hiN cell cultures, as determined by quan-

titative real time RT-PCR analysis (Figure S5A), and cell density

at 3 weeks was not significantly different across the hiN cell

cultures (Figure S5B).

APP Processing in FAD- and SAD-Derived hiN Cells
We next evaluated AD-associated phenotypes in the hiN cell

cultures, including the processing of amyloid precursor protein

(APP) to the Ab42 and Ab40 fragments. FAD patient brain is

typified by an increased Ab42/Ab40 ratio (Hardy and Selkoe,

2002). Consistent with this, the Ab42/Ab40 ratio was dramatically

increased in FAD hiN cell cultures relative to UND hiN cell
359–371, August 5, 2011 ª2011 Elsevier Inc. 365
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Figure 6. Modified APP Processing in FAD hiN Cell Cultures

(A) The Ab42/Ab40 ratio is selectively increased in FAD hiN cell cultures relative to UND hiN cell cultures or fibroblasts. Media from hiN cell cultures (at 3 weeks

posttransduction, empty circles) or fibroblast cultures (green circles), as indicated, was assayed for secreted Ab40 and Ab42 by sandwich ELISA. Results

represent the mean ± SEM. n = 3 individual lines per group, with 11 to 16 independent wells for each line. *p < 0.05 by ANOVA with post hoc Tukey HSD test.

(B) Total absolute extracellular Ab levels (Ab40 [white bars] + Ab42 [gray bars]) are presented for cultures as in (A). Total Ab was increased by neuronal hiN cell

conversion in the context of FAD patient cultures. In contrast, UND fibroblast cultures were not significantly different from UND hiN cell cultures. n = 3 individual

lines per group, with 11 to 16 independent wells for each line. *p < 0.05. Results represent the mean ± SEM.

(C) Quantification of total intracellular APP holoprotein using sandwich ELISA. APP is enriched in hiN cell cultures relative to fibroblast precursors (*p < 0.05 for all

comparisons.), but UND and FAD genotypes do not differ significantly. Results represent the means ± SEM (n = 6–9 wells per group). *p < 0.05.

(D) MAP2-positive neuronal cells within the hiN cultures are enriched for the Ab42 fragment, compared to fibroblastic MAP2-negative cells. FAD and UND hiN cell

cultures were immunostained with antibodies to MAP2 (left, red) along with Ab42 (right, green); nuclei are identified by Hoechst staining (blue). MAP2-negative

fibroblastic cells (demarcated with dotted lines) display low levels of Ab42 relative to the MAP2-positive cells, as quantified in Figure S5J.

(E) Accumulation of sAPPb in the media of UND and FAD cultures, as determined by sandwich ELISA. Results represent the means ± SEM; n = 4–5 wells per

individual line.

See also Figure S5.
cultures, as quantified in cell media by ELISA (Figure 6A; p <

0.001, ANOVA with post hoc Tukey HSD; n = 3 patient lines per

FAD or UND group with 11–16 independent cultures per line).

Similarly, on a pooled analysis of all FAD hiN versus all UND hiN

cultures, the Ab42/Ab40 ratio is significantly increased in the

FAD group (p < 1 3 10�9; ANOVA with post hoc Tukey HSD;

n > 38 per group). The increased Ab42/Ab40 ratio is most evident

in the AG07768 line, but even in the absence of those AG07768

samples, the FAD group displayed an elevated Ab42/Ab40 ratio

(p < 1 3 10�9; ANOVA with post hoc Tukey HSD, n > 29 per

group). Importantly, the Ab42/Ab40 ratio in FAD hiN cell cultures

was also elevated relative to the originating FAD fibroblast

cultures (p < 1 3 10�9; ANOVA with post hoc Tukey HSD; n >

38 per group). In contrast, the Ab42/Ab40 ratio in UND hiN cell

cultures was not significantly elevated relative to the originating

UND fibroblast cultures (p > 0.05; ANOVA with post hoc Tukey

HSD; n>30per group). FADhiN cell conversion led to an increase

in the level of total Ab (combined Ab42 and Ab40 polypeptides)

relative to the originating FAD fibroblasts (Figure 6B; p < 0.05;

ANOVAwith post hocTukeyHSD; n= 3 individual lines per group,
366 Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc.
with 11 to 16 independent wells for each line). Such an increase in

total Ab with hiN cell conversion was not apparent in the context

of UND cultures. Taken together, these data indicate that hiN cell

conversion appears to amplify an FAD-associated phenotype in

the context of PSEN1 or PSEN2 mutations.

Levels of APP holoprotein (the Ab42 and Ab40 precursor) did

not differ significantly between hiN cell cultures from FAD

patients versus UND controls, as quantified by ELISA on cellular

lysates (Figure 6C) or by quantitative real-time RT-PCR on RNA

transcripts (Figure S5C). However, in comparison to the original

fibroblast cultures, holoprotein expression was consistently

elevated with all hiN cell cultures regardless of origin (Figure 6C).

Because hiN cultures from FAD and UND genotypes displayed

similar levels of APP, it is unlikely that APP levels account for

the selective generation of Ab42 in FAD hiN cells. Using coimmu-

nostaining with antibodies to Ab42, Ab40, and MAP2, we further

observed that both isoforms of Ab are selectively increased in the

MAP2-positive neuronal cells, but not in the remaining fibro-

blastic cells, that compose the mixed hiN culture (Figures 6D

and Figures S5H–S5J).
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Cleavage of APP by BACE1 b-secretase activity is thought to

be a rate-limiting step in the production of Ab and precedes

cleavage by g-secretase (Thinakaran and Koo, 2008). We thus

quantified the soluble extracellular cleavage product of APP by

BACE1, termed sAPPb, in the hiN cell cultures. There was

a consistent increase in the sAPPb product in converted FAD

and UND hiN cell cultures relative to their respective fibroblasts.

However, accumulation of sAPPb was not significantly elevated

in hiN cell cultures from FAD patients relative to hiN cell cultures

from UND individuals (Figure 6E). BACE1 transcript levels, as

determined by quantitative real-time RT-PCR, did not appear

altered in hiN cell cultures relative to fibroblasts, regardless of

disease status (Figure S5D). Thus, the elevated level of Ab42 in

hiN-FAD is not caused by increased activity of BACE1.

Altered APP-Positive Endocytic Compartment
Morphology in FAD hiN Cells
Immunocytochemical analysis of hiN cells with an antibody to

the APP amino terminus domain revealed the presence of

APP-positive puncta within soma (Figures 7A and 7B). In con-

trast, such APP-positive punctate structures were not readily

apparent in the originating fibroblasts. Quantitative analysis of

APP staining of hiN cells revealed that APP-positive puncta

(defined as 0.1 to 1 mm in diameter) are significantly increased

in FAD-derived hiN cell cultures, relative to UND hiN cells, quan-

tified in terms of total puncta area per cell (Figure 7C; FAD, 78.2 ±

10.93 mm2; UND, 23.8 ± 3.28 mm2). This is due to an increased

number of puncta per cell as well as an increased average size

of puncta (Figures S6A and S6B). Similar findings were apparent

with a second independent antibody to APP (Figure S6I). Patho-

logical studies of sporadic AD patients at autopsy have reported

evidence for alteration in the size of intracellular vesicular endo-

cytic (Cataldo et al., 1997) and lysosomal (Cataldo et al., 1996)

compartments.

APP processing by the b- and g-secretase activities may

largely proceed within vesicular endosomal compartments

(Tang, 2009). We thus further characterized the APP-positive

punctate structures in hiN cells by costaining with antibodies

for a panel of vesicular compartment and plasma membrane

markers. Subpopulations of APP-positive puncta in hiN cells

stained positively for an early endosomal marker, early endo-

some-associated antigen-1 (EEA1); a late endosomal marker,

the cation-independent mannose 6-phosphate receptor (MPR);

and a lysosomal marker, the lysosomal associated marker

protein-2 (LAMP2). Localization to the plasma membrane at

the cell periphery was also observed (quantified in terms of co-

localization at a membrane dye, CellMask). Of these popula-

tions, the EEA1-positive, APP-positive compartment was signif-

icantly increased in FAD hiN cells relative to UND cells, as

quantified by the percentage of APP-positive puncta stained

with EEA1 (Figures 7D–7F; FAD, 24% ± 2%; UND, 13% ± 1%).

In contrast, APP puncta staining at the plasma membrane

appeared significantly reduced in the FAD hiN cells (FAD-hiN,

2.1% ± 1.3%; UND-hiN, 6.3% ± 1.0%; Figures 7G–7I). APP-

positive endocytic puncta also stained for BACE1 (Figure 7J–

7L and Figure S6I; FAD, 54.2 ± 2.91 mm2; UND, 16.5 ±

0.83 mm2), as expected given the known localization of BACE1

(Vassar et al., 1999). Finally, we note that EEA1-positive and
MPR-positive puncta were generally enlarged in FAD cells

(Figures 7D–7F and Figures S6C–S6E), regardless of costaining

with APP, indicative of a broadly altered endocytic compart-

ment, rather than a specific defect in APP-positive structures.

We next sought to clarify whether altered APP-positive

puncta morphology in FAD-derived hiN cells might simply be a

secondary consequence of Ab accumulation. Treatment with

a g-secretase inhibitor, DAPT, which suppressed production of

Ab (Figures S6K and S6L), did not prevent increased APP-posi-

tive puncta area per cell in the context of the FAD lines (Figures

7M–7O). Rather, we found that DAPT treatment of UND hiN cells,

but not FAD hiN cells, partially phenocopied the magnified APP-

positive intracellular compartment (Figures 7M–7O). Thus, the

increased APP-positive puncta seen with DAPT of UND hiN cells

was occluded in the context of FAD hiN cell cultures (that already

harbor increased total APP-positive puncta).

Finally, to relate the altered intracellular APP-positive puncta in

FAD hiN cells to FADmutations, we performed a ‘‘rescue’’ exper-

iment by overexpressing wild-type PSEN1 into FAD PSEN1

mutant hiN cells. Although FAD mutations are dominantly in-

herited in human patients, it is well described that overexpres-

sion of PSENs leads to preferential replacement of the endoge-

nously encoded form by the exogenous overexpressed gene

product (in part, a consequence of reduced stability of the en-

dogenously encoded gene product; Thinakaran et al., 1997).

Consistent with this, we found that overexpression of wild-type

PSEN1 by transfection of a plasmid vector into hiN cell cultures

rescued the endosomal APP-positive endocytic phenotype;

transfection of this vector into UND cells did not appear to alter

intracellular APP-positive puncta staining (Figures 7P–7R).

These findings suggest that the FAD phenotype is caused, at

least in part, by abnormal endocytic function, which is depen-

dent on PSEN.

DISCUSSION

A major goal in regenerative medicine is the facile generation of

human neurons for cell replacement therapeutics or disease

modeling. The description of hiPS cell reprogramming methods

for the generation of pluripotent cells has fueled excitement in

the field. But as hiPS cell generation is complex, time con-

suming, and associated with tumorigenicity and genomic DNA

rearrangements (Pera, 2011), alternative approaches are of

interest. By comparison to hiPS cell reprogramming, hiN cell

conversion offers a more directed route to terminally differenti-

ated neurons.

Our analysis of FAD patient-derived hiN cell cultures under-

scores the potential utility of such human neuronal disease

models. hiN cells from PSEN mutant FAD patient fibroblasts

display an increased Ab42/Ab40 ratio relative to UND hiN cells,

consistent with patient brain pathology andwith the well-charac-

terized role of PSENs as essential components of the g-secre-

tase complex (Hardy and Selkoe, 2002). Surprisingly, the impact

of FAD PSEN mutations on the Ab42/Ab40 ratio was amplified

upon hiN cell conversion from fibroblasts. This suggests amodel

in which PSEN FAD mutants may alter APP processing at

multiple levels: directly through modified g-secretase activity,

as well as indirectly with altered cellular context. Consistent
Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc. 367
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Figure 7. APP Is Enriched within Modified Endocytic Compartment Puncta in FAD hiN Cells

(A and B) APP immunostaining of hiN cells (right) derived from representative UND (A, AG07926) and FAD (B, AG09908) cultures labels punctate structures that

are typical of endocytic compartment vesicles. In contrast, control fibroblast cultures display a distinct labeling pattern, with sparse punctate morphology (left).

Insets show high-magnification views for visualization of APP-positive puncta (arrows). N, nuclei.

(C) Quantification of APP-positive total puncta area per cell (mm2, number of puncta per cell3 average puncta area) in individual UND and FAD hiN cell cultures as

labeled. Total APP-positive puncta area was significantly increased in FAD hiN cultures, relative to UND cultures, as a consequence of increased puncta size and

number. Results represent mean ± SEM (n = 12–38 cells in a total of 6 wells per group). *p < 0.05.

(D–F) Colocalization of APP-positive puncta with the early endosomal marker EEA1 in UND and FAD hiN cells. APP-positive puncta (in red) appeared partially

colocalized with EEA1 (in green), and this was most prominent in FAD (E) relative to UND (D) cultures. Colocalization was visualized as yellow in the merged

images. Inset panels present merged as well as individual staining patterns for visualization of areas, as demarcated by a blue square. (F) Quantification of APP

and EEA1 colocalization by fluorescent microscopy as in (E). Puncta are defined here as distinct signal intensities 0.1–1 mm in diameter using Image J analysis

software (NIH).

(G–I) A subset of APP-positive puncta is costained with a plasmamembrane marker at the cell periphery (PM, in green). In contrast to EEA1 costaining, peripheral

plasma membrane marker costaining appears reduced in the FAD hiN cells (H) relative to UND hiN cells (G). Insets are high-magnification views of areas

demarcated by blue squares. Arrows point to examples of APP puncta at cell cortex. Quantification of colocalization by fluorescent microscopy is shown in (I).

(J–L) Double immunostaining of hiN cells for APP and BACE1. Colocalization of APP and BACE1 was assessed in UND (J) and FAD (K) hiN cells. Quantification of

the data shows increased colocalization in the FAD cultures, consistent with the preferential localization to intracellular endocytic vesicles (L). All results represent

the means ± SEM (n = 35–48 cells in 3–6 independent wells per group). *p < 0.05.

(M–O) Enlarged APP-positive puncta in UND hiN cells treated with the g-secretase inhibitor DAPT. UND (M, AG07926) and FAD (N, AG09908) hiN cells were

treated with either vehicle (left) or DAPT (right) for 18 hr and then fixed and stained with an antibody to the APP amino terminus. Insets at lower right show high-

magnification views for visualization of enlarged APP-positive puncta. (O) Quantification revealed that g-secretase inhibitor treatment led to a significant

368 Cell 146, 359–371, August 5, 2011 ª2011 Elsevier Inc.



with this model, we show that intracellular localization of APP

within vesicular endocytic structures is modified in the context

FAD PSEN hiN cells.

Prior pathological autopsy studies of early-stage AD patient

brain have reported the presence of altered endosomal, lyso-

somal, and autophagy compartments (Nixon and Cataldo,

2006). Furthermore, a complete deficiency of PSEN-1 and -2 in

fibroblasts can impair endosomal trafficking (Repetto et al.,

2007). However, the impact of FAD PSENmutations on neuronal

APP-positive endosomal structures has not previously been

characterized. Our analysis further indicates that g-secretase

inhibition in UND hiN cell cultures appears to mimic the APP-

positive endosomal compartment phenotype of FAD cultures,

suggesting a role for reduced g-secretase activity in this FAD

phenotype. It remains possible that FAD-associated endosomal

compartment modifications, as observed in FAD hiN cells, play

a pathogenic role in AD independent of Ab. The issue is com-

plicated by the many functionally heterogeneous FAD-associ-

ated PSEN1 and PSEN2 mutations. An important limitation to

our present study is that we evaluate only two such forms,

and thus future studies with additional lines would likely be

informative.

Examination of FAD hiN cell models for additional AD-associ-

ated pathological findings, such as defective synaptic function,

will be of interest. To this end, the ability of hiN cells to function-

ally integrate into neuronal circuitry will be particularly useful. It is

also conceivable that such integration of hiN cells into murine AD

disease models will test the therapeutic potential of hiN cells.

Finally, we note that, in the future, it may well be feasible to eval-

uate mechanisms of sporadic AD pathology using hiN cell

models.

EXPERIMENTAL PROCEDURES

Human Skin Fibroblasts

Human skin fibroblast cultures from nine individuals were used in this study

(see Table S1). All lines were derived from de-identified, banked tissue

samples. Human skin fibroblasts were cultured in standard fibroblast media

(see Extended Experimental Procedures).

Plasmid Construction and Lentiviral Production

cDNAs for the reprogramming factors were cloned into lentiviral vectors either

individually or as a polycistronic set (for Ascl1, Brn2, and Zic1; see Extended

Experimental Procedures for cloning details). Production of replication-incom-

petent lentiviral particles was as described (MacLeod et al., 2006). Human

wild-type PSEN1 cDNA (Openbiosystems) was cloned into the pLenti6.3/

V5-Dest vector using the Gateway LR cloning system (Invitrogen).

hiN Cell Induction and Transfection

Fibroblasts were transduced with replication-incompetent, VSVg-coated len-

tiviral particles encodingAscl1,Brn2,Myt1l,Oligo2, and Zic1 at amultiplicity of

infection of 2:1 and were maintained in fibroblast media for 2 days (see

Extended Experimental Procedures). Subsequently, the media was replaced
increase in total APP-positive puncta area per cell within UND, but not FAD, cult

*p < 0.05.

(P–R) Rescue of the endosomal APP-positive endocytic phenotype in PSEN1mut

cell cultures were transfected with an expression vector for human wild-type PSE

incubated for an additional 72 hr and subsequently immunostained for APP. Resul

*p < 0.05.

See also Figure S6.
with glial-conditioned N2 media (GCM; DMEM/F12 with N2 supplement;

Invitrogen) containing 20 ng/ml BDNF and 20 ng/ml NT3 (Peprotech). For the

first 4 days in GCM, dorsomorphin (1 mM; Stemgent) was also supplemented.

Media was changed every 2–3 days for the duration of the culture period. For

the PSEN1 rescue study, cells were transfected with pLenti6.3/V5-Presenilin1

and pEGFP-C1 plasmids (9:1) using the Lipofectamine 2000 reagent (DNA:

LF2000 1 mg: 5 ml in each well of 24 well, Invitrogen).

Immunocytochemistry, Immunohistochemistry, and RT-PCR

Immunocytochemistry and immunohistochemistry (IHC) were performed as

previously described (MacLeod et al., 2006). Detailed antibody sources and

dilutions utilized can be found in the Extended Experimental Procedures.

Imaging was conducted by laser scanning confocal microscopy with a 633/1.4

objective (LSM510, Carl Zeiss) or epifluorescence microscope (Olympus

1X71; Japan). Cell counts and fluorescence intensities were quantified within

10–35 images of randomly selected views per well. Subsequently, images

were analyzed for cell counts and fluorescent intensity using Image J 1.42q

software (National Institute of Health, USA). Values are presented as mean ±

SEM. Quantitative real time RT-PCR was performed as described (Rhinn

et al., 2008); primer pairs utilized are detailed in the Extended Experimental

Procedures. Gene expression levels were quantified by the DDCt method

(Rhinn et al., 2008).

FACS and Transcriptome Analyses

hiN cells (106 cells) were stained with an antibody to NCAM (BD Bioscience)

and then sorted on a FACS Aria IIu (BD Bioscience, CA) directly into RNA lysis

solution (Ambion, TX). RNA was extracted from cell preparations using the

RNAqueous Micro Kit (Ambion). Concentration and quality of RNA were as-

sessed using the Bioanalyzer system (Agilent). mRNA was amplified and

labeled using Ovation Pico WTA System (Nugen) and was subsequently

hybridized to Human Genome U133 Plus 2.0 Arrays (Affymetrix). Raw data

were processed using the R statistical computing environment Affymetrix

Linear Modeling Graphical User Interface package (affylmGUI). Computational

methods are detailed in the Extended Experimental Procedures.

In Utero Transplantation

Human skin fibroblasts (STC0022) were labeled by transduction with a GFP-

encoding lentiviral vector and then passaged three times over 10 days prior

to initiation of hiN cell induction to remove residual lentivirus. hiN induction

was then performed using the lentiviral vectors encoding Ascl1, Brn2, Myt1l,

Oligo2, and Zic1, as described above. At 7–10 days later, cells were trypsi-

nized and triturated to single-cell suspensions in the presence of 0.1% DNase

(QIAGEN). Timed pregnant C57BL/6N mice at day 13.5 of gestation were

anesthetized with oxygen containing 2% isoflurane administered through an

inhalation mask, and 2–5 3 105 cells were injected into the telencephalic

vesicle of each embryo as described (Brüstle et al., 1997). Transplanted

mice were spontaneously delivered and analyzed at the time points indicated.

Following deep isoflurane anesthesia, mice were euthanized, and the brains

were rapidly removed and fixed in 4% paraformaldehyde for 2 days. For

IHC, 50 mm sections were cut with a vibrating blade microtome.

Electrophysiology and Calcium Imaging

Tight-seal whole-cell recordings (WCR) were performedwith borosilicate glass

pipettes (resistance 5–8 MU) using an Axopatch 200B amplifier (Axon Instru-

ments). Recordings from transplanted cells were performed in acutely

prepared brain slices (180 mm thick) through the entire cerebrum, as described

in detail (Llano and Bezanilla, 1980). For glial coculture studies, murine astro-

glial cells were prepared as previously described (Kaech and Banker, 2006)
ures. Results represent mean ± SEM (n = 35–50 cells in 3 independent wells).

ant FAD hiN cells. UND (P, STC0022) and PSEN1mutant FAD (Q, AG07768) hiN

N1 or empty vector (along with EGFP to mark transfected cells). Cultures were

ts represent themean ±SEM (n = 35–50 cells in 3 independent wells per group).
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from mice ubiquitously expressing red fluorescent protein (Muzumdar et al.,

2007). For calcium imaging, Oregon Green-BAPTA 1 (OG1; Molecular Probes)

was added at a concentration of 100 mM. Fluorescent imaging was conducted

using a digital EM-CCD camera (Andor ixon) with an LED light source (Cairn).

Values are expressed as the percentage of change in fluorescence signal with

respect to prestimulus control,DF/F0 = 1003 (F� F0)/(F0�B), wherein F is the

fluorescence at any given time, F0 the average at the prestimulus period, and B

the average value of the background fluorescence at each time point, as quan-

tified in four regions of the imaged field that do not contain any part of the dye-

filled cell.

Sandwich ELISAs

APP ELISA was performed using a human APP ELISA kit (Invitrogen, Cama-

rillo, CA), according to the manufacturer’s instruction. Absorbance was read

on a VersaMax ELISA Microplate Reader (Molecular Devices, Inc., Sunnyvale,

CA) at 450 nm. The amount of APP was normalized to the total cell protein

(determined with the DC Protein Assay Reagent kit; Bio-Rad, Hercules, CA).

sAPPb ELISA was performed using BetaMark sAPP Beta ELISA kit (Covance,

Princeton, NJ), according to the manufacturer’s instruction. The chemilumi-

nescence was read on a microplate luminometer (SPECTRAFluoR Plus,

TECAN, Männedorf, Switzerland). Ab quantification was performed by ELISA

as described previously (Cirrito et al., 2003).

Statistical Analysis

Statistic analyses were performed with the Ystat 2002 software (Igaku Tosho

Shuppan Co., Ltd., Tokyo, Japan) together with Microsoft Excel software

(Microsoft Corp., Redmond, WA, USA) or by using R aov and TukeyHSD func-

tions. The statistical significance of comparisons was assessed either by

ANOVA with post hoc Tukey HSD (where indicated) or by nonparametric

ANOVA Kruskal-Wallis H test, followed by post hoc Mann-Whitney U test

with Bonferroni correction.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and four tables and can be found with this article online at doi:10.

1016/j.cell.2011.07.007.

ACKNOWLEDGMENTS

We are grateful to David Holtzman and John Cirrito for generously providing

reagents for ELISA and Laura Baur for assistance with plasmid construction.

We thank Arnon Rosenthal, Scott Small, and Oliver Hobert for reviewing the

manuscript. Peter Koppensteiner, Laura Baur, and Ottavio Arancio helped in

early stages of the project. We thank Mikako Sakurai for technical advice on

in utero transplantation and the New York Stem Cell Foundation for FACS

facility services. This work was funded, in part, by the Helmsley Foundation,

New York State Stem Cell Science NYSTEM grants C024402 and C024403,

and an anonymous foundation grant to A.A., as well as NIH grant AG027476

to H.M..

Received: December 9, 2010

Revised: June 1, 2011

Accepted: July 8, 2011

Published: August 4, 2011

REFERENCES

Abeliovich, A., and Doege, C.A. (2009). Reprogramming therapeutics: iPS cell

prospects for neurodegenerative disease. Neuron 61, 337–339.

Alzheimer, A. (1907). Uber eine eigenartige Erkrankung der Hirnrinde. Allg Z

Psychiat Psych-Gerichtl Med 64, 146–148.

Bentahir, M., Nyabi, O., Verhamme, J., Tolia, A., Horré, K., Wiltfang, J., Essel-
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